专访创新工场CTO王咏刚:AI人才真的能进行规模化复制吗

2019-08-08 09:23

最头疼的问题是资源不足,今年北上广南四城联动开营

三年来,DeeCamp 招生人数越来越多,招生门槛越来越高。2017 年,从 1000 人中选出 36 人;2018 年,从 7000 人中选出 300 人;到了今年,从一万人中选出了 600 人,每 100 个人中只有 6 人会被选中。

「扩张太快,我这儿没法分配足够的资源。我们的团队也都相对比较小。」王咏刚说,「每一年,我觉得最最苦恼、最最麻烦的一点就是我们的资源不足。」

今年 DeeCamp 正处于学生组队做项目的环节,王咏刚依旧头疼:资源够不够,赶快从哪儿再调一些资源,补充到最缺资源的地方。项目做完后开始准备展示,展示环节资源够不够,未来的展示结营仪式到底需要多少人来运营?

而且,因为 DeeCamp 是线下培训活动,随着学生人数增加,在一个地方招聘和培训所付出的资源代价非线性增长。

为了解决资源不足的问题,今年,DeeCamp 在北京、上海、广州、南京四城联动展开。不少公司贡献了便宜的 GPU 资源,贡献了工程师帮忙带学生,也有很多志愿者加入进来,帮助解决了一些问题。

「这四个地方有几个特色:第一,政府对 AI 发展特别重视;第二,都有非常好的跟 AI 相关的教育,著名的高校都在这几个地方;第三,产业和创业的环境都不错。我们在这四个地方办这个活动,最终,不管是招聘、学生的输出,还是帮助学生去认识这些产业合作伙伴的资源,都相对比较容易解决。」王咏刚这样解释选择这四地的理由。

招生规模越来越大,最喜闻乐见的,是企业。「这个时代,各个公司都有强烈的人才需求,特别是对能把 AI 商业落地的人才的需求。」

王咏刚表示,前两年,有需求的企业主要是传统的平台型公司和 AI 创业公司。今年,一些并非以 AI 为核心业务的传统领域/垂直领域的公司也找上门来。比如,玛氏。此次,玛氏希望学生们借助计算机视觉技术图像识别宠物的健康评价。

DeeCamp 的目标是打造AI 应用型人才培养平台,解决真实问题。因此,招生时,他们对生源做了规划:除了招计算机、数学专业的学生,电子工程、应用物理、应用数学等相关专业的学生,也给产品向和用户体验向的同学留了一小部分空间,以让每一个学生组都能像真实世界的工程小组或者产品研发小组一样,有一个丰富的角色配置。

不可否认,这个夏令营亮点突出,但他们不分年级招收学生,本科生、硕士生、博士生同堂上课,这样的课程安排是否能让每一个学生都能有尽可能多的收获?对于特别拔尖的学生,他们又是否会制定个性化的培训方案?项目实践方面,DeeCamp 是如何选择项目的?是导师主导还是学生主导?学生做的项目又是否创作过价值?从 DeeCamp 毕业的学生,流向是怎样的?企业需求旺盛,未来,DeeCamp 是否会继续扩大招生规模?又如何平衡教学规模和教学质量?

8 月 2 日,创新工场组织了小范围的媒体专访,创新工场 CTO、创新工场 AI 工程院执行院长王咏刚分享了举办 DeeCamp 多年来的心路历程,对上述问题进行了解答,并对李开复老师「五周培养一批 AI 工程师」的言论做了自己的解读。

机器之心对专访内容做了不改变愿意的删减、编辑,以飨读者。


关于课程设置

Q:开复老师最近在他公众号的一篇文章中写道,培训一批 AI 工程师,五周的时间就够了。课程设置真的能达到这么好的效果吗?

王咏刚:开复说我们五周就可以把一个人才从学校阶段培养到使用阶段,这一件事我们证明可以,但是它并不是意味着所有人才都要走这一个路径。有一些人才,开复说,我可以替代博士,那替代是要这个人才取决于他要做什么,如果这个人才未来是说我就是科研向的,我就希望在科研领域树立一个位置,那显然 DeeCamp 对你的帮助不大。DeeCamp 除了给你做一些梳理以外,真正的科研工作还要你扎扎实实去做,该读博士还要读博士、该写博士论文还是要写博士论文的。

但是反过来讲,如果你是想找到一个未来在产业界有熟练工作、能够快速上手、尽快适应产业链的机会,那你在学校读的研究生、博士阶段的大多数课程对你来说,作用就没有 DeeCamp 这么大了。

DeeCamp 因为非常简单地把科学知识和产业知识在一个密集的课程,加上一个密集的项目实践中,让你同时体验这么多东西,所以在 DeeCamp 里面,你可以认为是学生不可多得的、在四五周的时间里立体式体验 AI 应用场景的一个机会。

当他体验过之后,至少在方法论层面,我认为他已经满足了 AI 应用型人才的需求,或者说他知道未来怎么样去学习,能够达到这样一个目标。但是你说是不是所有人经过五周就一定能够成为什么样的人,这个我也没法保证。

Q:我们招了本硕博、不同年级的学生,其实差别挺大的。我们怎么去保证让每一个学生的参与感都特别好,或者收获到尽可能多的东西?

王咏刚:我还是回到那天周志华老师讲课的几句话。

周志华老师上来就说,我知道 DeeCamp 在座的,既有本科生也有研究生也有博士生,而且你们学的很多,特别是科研方向领域挺不一样的,我来之前还在想,怎么把一个课程让你们大家都有收获。

周志华老师实际上给大家讲的是一种逻辑梳理课。这种课适合于所有不同阶段的、学 CS 学 AI 的学生。他不是专门就某一个点的知识去展开说我这个点的问题该怎么解决,这时候需要的数学知识可能是本科生不具备的。他那一天的课程其实并没有偏重于数学知识的展开,而是理论的梳理。

比如,为什么说一个完全可微的深度学习框架在某种情况下是有缺陷的,特别是基于符号语义的推理是有缺陷的?在这种缺陷下,我是不是能够在中间加入一些不可微组件,比如树形结构在里面。怎么样连接更好?

他完全是从逻辑的角度分析为什么 AI 在这个方向的发展会有前途,这个方向的前途到底未来有几条路。他后来完全是用了一种脉络展开的方式、逻辑梳理的方式来帮学生讲这个事情。

所以我认为,在这件事情上,周志华老师那门课程,其实代表了 DeeCamp 准备课程的思路,就是:我们更愿意给学生一种逻辑、一种方法论,而具体的,比如数学的某一个解法或者某一个知识点,学生完全可以用自己的方式去解决。

我讲跟 AI 相关的产品和架构时,基本上也是用这样一个方式。我没有办法针对某一个分布式架构、AI 推荐模型和一个分布式架构的结合点,详细推敲里面很多逻辑问题、技术问题、数学问题等等。如果这么讲的话,可能很多本科生不具备这样的背景知识。

我更多是把所有的典型架构和 AI 结合的方式有哪几种、典型架构在真正实现的时候哪些问题需要关注、AI 和它们的关系什么样,在逻辑上帮学生梳理清楚。可能在某一个领域做的很深的人觉得内容有一点浅,但这种逻辑对他来说,从一个更高的高度去回顾一下,可能也有帮助。所以我觉得,这样找一个教学上的平衡,可能是我们追求的一个东西。

Q:如果发现 600 多个学生里有一些学生的优势非常大,我们会不会针对这些学生做一些课程调整,或者帮他们加一些新的培训项目?

扫描二维码分享到微信

在线咨询
联系电话